Cell entry of Lassa virus induces tyrosine phosphorylation of dystroglycan.
نویسندگان
چکیده
The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.
منابع مشابه
Lamp1 Increases the Efficiency of Lassa Virus Infection by Promoting Fusion in Less Acidic Endosomal Compartments
Lassa virus (LASV) is an arenavirus whose entry into host cells is mediated by a glycoprotein complex (GPC) comprised of a receptor binding subunit, GP1, a fusogenic transmembrane subunit, GP2, and a stable signal peptide. After receptor-mediated internalization, arenaviruses converge in the endocytic pathway, where they are thought to undergo low-pH-triggered, GPC-mediated fusion with a late e...
متن کامل-Dystroglycan can mediate arenavirus infection in the absence of -dystroglycan
Dystroglycan (DG) is a highly versatile cell surface molecule that provides a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. Encoded by a single gene, DG is posttranslationally processed to form -DG, a peripheral protein identified as the cellular receptor for lymphocytic choriomeningitis virus (LCMV) and Lassa fever virus (LFV), and the membrane-spannin...
متن کاملLigation of α-Dystroglycan on Podocytes Induces Intracellular Signaling: A New Mechanism for Podocyte Effacement?
BACKGROUND Alpha-dystroglycan is a negatively charged glycoprotein that covers the apical and basolateral membrane of the podocyte. Its transmembrane binding to the cytoskeleton is regulated via tyrosine phosphorylation (pY892) of beta-dystroglycan. At the basolateral side alpha-dystroglycan binds the glomerular basement membrane. At the apical membrane, it plays a role in the maintenance of th...
متن کاملCharacterization of the Interaction of Lassa Fever Virus with Its Cellular Receptor -Dystroglycan
متن کامل
25-Hydroxycholesterol Inhibition of Lassa Virus Infection through Aberrant GP1 Glycosylation
Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase (CH25H) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting envelop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular microbiology
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2013